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Abstract

The problem of mass/heat transfer from a viscous droplet is solved by using a finite-difference scheme, and a dual
kind of computational grid. The steady-state Navier-Stokes and energy equations for the flow fields inside and outside
a viscous sphere in a fluid of different properties are fully solved numerically for Reynolds numbers (Re) ranging from 1
to 500. The corresponding Peclet numbers (Pe) range from 1 to 1000. At high values of Re and Pe a thermal and a
momentum boundary layer are formed in the outside fluid. For this reason, we adopted a method of a two sub-layer
concept for the computational domain outside the sphere. The first of these computational sub-layers is positioned at
the interface of the sphere and covers a thin region [of O(Re~'/?) for the momentum and of O(Pe~'/?) for the thermal
boundary layer]. The second computational layer is based on an exponential function and covers the rest of the domain.
We utilize this numerical technique to compute the Nusselt numbers for viscous spheres at different values of Re, Pe and
the viscosity ratio. The computations also show that the effect of the internal fluid density on the heat or mass transfer is
negligible. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of momentum or heat/mass transfer
from a sphere is one of the most fundamental problems
in transport processes. Practical processes, such as the
heat or mass transfer from bubbles rising in a liquid or
from drops moving in a fluid of different properties,
combustion processes and chemical reactions involving
fluids, are some of the applications of this subject. Be-
cause of the many practical applications and the scien-
tific interest it generates, the subject has been studied
extensively, starting with the pioneering work of Fourier
[1], which applies to a rigid sphere. Some of the more
recent work on the subject includes the treatises and
monographs by Levich [2], Soo [3], Clift et al. [4], Leal
[5] and Sirignano [6].

Friedlander [7] was the first to determine asymptoti-
cally the Sherwood number for a small rigid sphere and
for large Pe by applying the boundary-layer theory and
assuming a concentration profile with coefficients de-
rived from the boundary conditions. Acrivos and Taylor
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[8] also used an asymptotic method and applied their
study to a Stokesian velocity field, which implies very
small Re. They discussed the effect of small but finite Re
of the rigid sphere when Pe is large and, derived another
asymptotic expression for the Sherwood number (always
at large Pe).

Among the studies on the heat transfer from a solid
sphere one must mention a numerical study by
Abramzon and Elata [9] who computed the transient
heat transfer coefficient for rigid spheres assuming a
Stokesian velocity field (which implies low Re) outside
the sphere. In another numerical study, Feng and Mi-
chaelides [10] relaxed the Stokesian velocity field as-
sumption and used the full Navier—Stokes equations to
compute numerically the velocity and temperature fields
around a solid sphere. Hence, they derived transient and
steady-state heat transfer coefficients at high Re and Pe.
The same authors [11] also used a numerical method to
compute the effect of the viscosity ratio and of Pe on the
Sherwood number of a viscous sphere under creeping
flow conditions (Stokesian velocity field). Among the
computational studies on this subject one must mention
the ones by Haywood et al. [12] who computed the
transport properties of evaporating droplets and the one
by Chiang et al. [13] who computed the transient heat
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Nomenclature

a radius of the sphere
Bo Bond number

¢ specific heat capacity

D heat or mass diffusivity

d diameter of the sphere (= 2a)
E operator defined in (7)

g gravitational acceleration

k thermal conductivity

Nu Nusselt number

r radial direction

Pe Peclet number

Pr Prandtl number

Re Reynolds number

Sc Schmidt number

U average velocity

x,y  coordinates in the stretched computational
domain

Y y coordinate corresponding to the edge of

external domain

Greek symbols

function related to the vorticity
azimuthal coordinate
temperature/concentration

density ratio

viscosity ratio

dynamic viscosity

density

stream function

vector related to the vorticity function

DEDE A QD

Subscripts

i pertains to the internal flow

I pertains to the external flow

] pertains to the surface of the sphere

00 pertains to conditions far from the
sphere

Superscript
! (prime) denotes dimensional quantities

transfer from evaporating droplets at various initial
temperatures for moderate values of Re.

It is well known that the process of heat or mass
convection from a fluid—fluid interface differs signifi-
cantly from that at a fluid—solid body interface, because
of the induced fluid motion on both sides of the
interface. Early experiments by Hammerton and Garner
[14] performed at relatively high Re showed that the rate
of mass transfer increases significantly from circulating
bubbles of slightly soluble pure gases, compared to
bubbles where no appreciable circulation takes place.
This observation has been subsequently confirmed for
many other types of viscous spheres [4].

Feng and Michaelides [15] derived an asymptotic
solution for the case of transient mass or heat transfer
from a droplet at low but finite Pe (Pe < 1). They showed
that the effect of the circulation (and of Pe) is not sig-
nificant when Pe is small. However, this is not the case
for large Pe. Assuming a Stokesian flow, Bowman et al.
[16] computed the effect of the circulation inside the fluid
sphere on the mass and heat transfer rate at high Pe and
found that the internal circulation and advection of the
fluid may increase the rate of heat or mass transfer by as
much as 100%. Levich [2] also showed the importance of
the internal circulation and provided an analytical first-
order solution for the same problem, which is applicable
to low values of the viscosity ratio.

In this study, we employ a finite-difference scheme to
solve the full Navier-Stokes equations for both the ex-
ternal and the internal flow fields of the sphere, for
Reynolds numbers in the range 0-500. Hence, the heat/

mass transfer equation is solved and the Nusselt/Sher-
wood numbers are obtained under the condition of
constant temperature/concentration at the fluid-to-fluid
interface. The range of the results covers all possible
values of the viscosity ratio, Pe up to 1000, and Re up to
500. The results are presented in a tabular form and in
the form of a correlation, which may become very useful
in engineering calculations.

2. Governing equations and boundary conditions

We consider a fluid sphere (a bubble or a drop) with
density p; and viscosity ;, which translates rectilinearly
in a continuous fluid of density p, and viscosity u,. The
undisturbed fluid velocity with respect to the center of
the sphere is U,. All properties of the sphere will be
denoted by the subscript i, while those of the outer fluid
will be denoted by the subscript o. The coordinate sys-
tem is chosen to be spherical with its origin fixed at the
center of the droplet and with 6 = 0 in the downstream
direction.

We use the following dimensionless variables for the
radial distance, the stream function, the vorticity, and
the temperature:

4 Y Qa 0 -0
r—;, ‘P—W, Q—U—&, —7@;7@;, (1)
where the prime denotes dimensional variables and €' is
a dimensional function related to the z component of the
vorticity, {, by the following expression:
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Q' = 'V sin. (2)

Under these conditions, the dimensionless continuity
and momentum equations for the internal flow field
become

B2V, = @, 3)
and
Rei . 0 Qi alP, 0 Qi 6‘1’,
—sinf| —| ———— | = ————
2 dr \ ;2sin’0 00 00\ /2sin*0 Oy
=EQ;. (4)

We also consider a stretched coordinate system for the
external flow field given by the transformation
r =exp(y) or y =Inr. Hence, the corresponding gov-
erning equations for the external flow field become

E2 lpo — 907 (5)
and
Re vgingl (L W) 0 [ L 0¥
B dy \e¥sin?0 30 00 \ ¢?sin* 6§ Oy
_ e, (©

The operator E? is defined as follows:
& sin0 0o /1 d
»_ 0 Smb o/ 1 O
E=st5 ao(sin ao)' ™

The dimensionless steady-state energy or mass transfer
equation for the fluid may be written as follows:

Pe 6‘1’03 e 76‘[’0 g (©]
2 | 0y 06\ e¥sinf 00 0y \ e¥sinf

=e¥E’0. (8)

In this problem we assume that the surface of the sphere
has constant temperature or material concentration de-
noted by the variable ©¢. We also assume that the am-
bient fluid temperature/concentration is denoted by .
The dimensionless temperature concentration in the two
flow fields is given in (1). The Reynolds and Peclet
numbers, which appear in the previous expressions are
given as follows:

_ 2paUy _ 2p,aUy

Re; ., Re and
i Ho
9
Po— 2aU,, ®)
e = D,

Since most of the boundary conditions pertain to the
fluid—fluid interface, for clarity, the interface will be
denoted as » = 1 when it is approached from inside and
as y = 0 when it is approached from the outside flow
field. The boundary conditions for the stream function
and the vorticity may be written as follows:

A. At the center of the viscous sphere:

¥, =0, =0 atr=0. (10)
B. At the fluid—fluid interface,

¥,=0, ¥,=0 atr=1ory=0. (11)

C. The balance of forces in the tangential direction
at the fluid—fluid interface also yields:

*w, o, *w,  _ow,
A -2 = -3 .
or? or ), 0y? W /i
(12)

D. The conservation of mass in the tangential di-
rection at the interface results in the following ex-

pression:
oY, oY,
o |, 0 ‘ (13)
r=1 y y=0

E. Far from the center of the droplet, at the dis-
tance y =Yg, or r =exp(Yg), the flow is undis-
turbed and unidirectional. Hence, the values of
the functions ¥ and Q are:

1
y, = Eezy sin® 0, (14)
Q, = 0. (15)
Since, there are no explicit conditions for the

functions ©; and Q,, we evaluate these functions at
the interface from their relationship to the stream

function:
*Y, 0Y,
()
1 o* Oy

oY
oo

F. Finally, for the mass or heat transfer equation,

the pertinent boundary conditions are

(16)

=0

=1 aty=0, and O -0 as y=1Yg.
(17)

3. Numerical implementation

When Re > 100 or Pe > 100, a momentum or a
thermal boundary layer (or both) will be formed at the
interface of the sphere. The thickness of these boundary
layers is of the order of O(Re~'/?) and O(Pe~'/?) re-
spectively. It appears that the exponential grid, which
was used in previous studies on droplet behavior [18,19],
is not adequate to capture the details of momentum and
heat transfer in these boundary layers, especially at
small values of the viscosity ratio, 4. For this reason, we
are using a different approach, whose basic premise is to
separate the computational domain for the external
field, into two separate sub-domains:
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e The first sub-domain is very dense and covers the re-
gion of the two boundary layers.
e The second sub-domain is exponential and includes
the remaining of the flow domain.
For example, in the case of Re = 100 and Pe = 500, we
have chosen as the first sub-domain the region
0.00 < y < 0.05 and have placed 50 uniformly spaced
grid points, thus achieving a mesh size equal to 0.001 of
the sphere radius. For the outside sub-domain, we have
used a mesh of another 150 grid points. In order to
achieve a smooth transition, the interface region of the
two sub-domains is non-uniform.

It must be pointed out that, at high Re, a thin
boundary layer is also formed inside the sphere. How-
ever, the external flow velocity field is not sensitive to
this boundary layer [17]. This is also corroborated by the
fact that the density ratio (which is related to the internal
Re) does not affect the heat transfer rate, as shown in
Section 4.5.

The force on the sphere depends on the normal de-
rivative of the vorticity function, Q,, and the latter on
the higher derivatives of the stream function ¥, [17,18].
Therefore, high accuracy for the stream function is re-
quired near the interface. In order to achieve the re-
quired degree of accuracy, we use two cubic polynomials
for the interpolation of the stream function between
nearby points on either side of the interface (three rows
of grid points in either direction). Thus, the stream
function expressions in the vicinity of the fluid-to-fluid
interface become

Vi=ay ' + by’ +cy+d (18a)
for the internal flow, and
Wo=A(l1—r) +B(1—r)+C(1—r)+D (18b)
for the external flow.

Using the boundary conditions given in Section 2, the
coefficients a, b, ¢, d and A, B, C may be obtained in
terms of the stream function at all the grid points. In the

case of uniformly distributed grid points, we obtain the
following expressions for the vorticity function:

Oy = —T%ini + SY’LNQA]V; VN + 6cAr’ (19)
and
Quo = —T%¥,0 + Sle(,iy: V., — 6cAy el (20)
where ¢ is given by the following expression:
¢ = {A(=TPini + 8¥init — Vinia)AY

— (= TWo0 +8¥o1 — Vo) AP} /{2ArAy

x (24— 3)ArAy — 3(ZAy + Ar)]}. (21)

For the computations presented in this paper, the value
vg =5 (or equivalently, r,, = 148.4) is used. A grid of

180 points has been used in the radial direction (with
50 points reserved for the boundary layer sub-domain
as mentioned above). The number of points in the
traverse direction varied with Re or Pe and is at least
180. For the domain inside the sphere, a grid sensitivity
analysis revealed that 80 grid points in the radial di-
rection are sufficient for the high viscosity ratio cases,
where the velocities are lower, (that is, 4 > 1), while
fewer grid points (as low as 60) are sufficient for the
lower values of A. It must be pointed out that we have
conducted grid validation calculations by using finer
grids with two to three times as many points for both
the inside and the outside domains and found that the
solutions obtained were always within 1% of those
obtained by the coarser grid. This gave us an indication
that the grids used are satisfactory for the required
computations. The comparisons of the results with
asymptotic solutions, which are presented in Section
4.4, as well as the drag coefficient validations per-
formed in [17], are additional indications of the accu-
racy of our computations.

The convergence criterion for the iterations is chosen,
such that the largest relative fractional difference of any
quantity, ¢, between two consecutive iterations is less
than 107, i.e.,

(n+1) _ 4(n)
M <1075, (22)
max(]¢"], 1)

From the computations it was found that large values
of Re and Pe facilitate the faster convergence of the
program.

4. Results and discussion

4.1. Flow field and temperaturelconcentration profile
around a viscous sphere and results for Nu/Sh

Observations on the structure of the flow field and
the streamlines showed that at low Re there is no recir-
culation flow at the downstream side of the sphere.
However, when Re increases, a recirculation region is
formed behind the viscous sphere and becomes very
pronounced with the increase of Re. It is expected that
this recirculation would facilitate the heat/mass transfer
process. Similar observations on the corresponding re-
sults from the temperature/concentration equation,
show that the concentration contours are closer together
at higher Re, which would result in higher gradients and
higher mass transfer. In the case of heat transfer, an
analogous observation can be made: the rate of heat
transfer increases with Re at constant Pe. This is dem-
onstrated in the results of Fig. 1, which shows the local
Nusselt numbers at different Re when Pe = 100 and the
viscosity ratio is equal to 10.0. It is obvious that the local
Nu/Sh increases with Re, except in a small region located
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local Nusselt numbers
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angle theta

Fig. 1. Local Nusselt numbers at various Re when Pe = 100,
2. =10.0.

slightly above the recirculation region, where the local
velocity and the local value of Re differ substantially
from those shown in the legend of the figure.

Computations with the viscosity ratio as the param-
eter reveal that when the viscosity of the sphere is equal
to that of the outside fluid, no recirculation occurs be-
hind the sphere. When the internal fluid viscosity is
much higher (ten times) the sphere behaves more like a
solid sphere and flow recirculation downstream is evi-
dent. Computations on the Schmidt (or Prandtl) number
show that, in the case of higher Sc or Pe, the concen-
tration gradients near the sphere are substantially
higher, which would indicate a higher rate of mass or
heat transfer. This is demonstrated in Fig. 2, which
shows the local Nusselt (or Sherwood) numbers when
Re =200 and 4 = 10 for different Pe. It is obvious that
higher Pr or Sc result in substantially higher values for
Nu or Sh.
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Fig. 2. Local Nusselt numbers at different Pe when Re = 200,
o =10.

Fig. 3 depicts the local Nusselt/Sherwood numbers
at various viscosity ratios when Pe = 100 and Re = 200.
It is evident that the local Nu/Sh decreases with an
increase in A, everywhere except in the region behind
the sphere where recirculation occurs. The area-average
heat/mass transfer coefficient is lower with an increase
of A. This is in agreement with the fact that bubbles
have higher overall heat transfer coefficients than solid
spheres [4].

4.2. The drag coefficients of a viscous sphere

Using a similar numerical method, Feng and Mi-
chaelides [17] derived engineering correlations for the
drag coefficients of a viscous sphere in the range
0 < Re < 1000. These correlations are as follows:

N 2—=4 4
C])(Re7 /L) = CD(Re, 0) +6+} C])(Re7 2)
for 0<2<2, and 5 < Re <1000, (23a)
and
Co(Re, 7) = — Co(R 2)+)“*2C(R )
D e7/“7/1+2 D {ke, }+2 D {te, 00
for 2< A< 00, and 5 < Re < 1000, (23b)

where the functions Cp(Re, 0), Cp(Re,2) and Cp(Re, o)
are the drag coefficients of spheres at 2 =0 (inviscid
bubble), A =2, and 1= oo (solid sphere) respectively
and are given by the following expressions:

48 221 214
Re,0) = — (1 + = —-="— 24:
CD( 870) Re( +\/§E Re ), ( cl)
Cp(Re,2) = 17.0Re™/3, (24b)

_ lambdaz0.0 ——
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Fig. 3. Local Nusselt numbers for Re =200, Pe = 100 with
different viscosity ratio.
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and

Cp(Re, c0) = % <1 + éRez/3) . (24c)

4.3. Numerical results for the Nusselt/Sherwood numbers
for a viscous sphere

The governing equations were solved to yield the rate
of heat/mass transfer and, hence, the Nusselt/Sherwood
numbers for a viscous sphere. The results are presented
in Table 1 with Re, Pe and the viscosity ratio A as
parameters. It must be pointed out that the results for
Re — 0 have been derived by using the Stokes flow
velocity profile around the sphere. In this case, the ve-
locity field around the sphere was given by an analytic
expression [5,6,11] and only the energy/mass transfer
equation was solved numerically. The results for finite
values of Re were derived by simultaneously solving the
continuity, the momentum and the energy equations.
Some other general conclusions that may be made from
a glance at the results of Table 1 are that the Nusselt/
Sherwood numbers increase with Pe (at constant Re) or
with Re (at constant Pe) and decrease with A.

From the results of Table 1, it is evident that for
small Re (Re<10), the calculated Nusselt/Sherwood
numbers are very close to the ones calculated under the
assumption of Stokesian flow (their fractional difference
is less than 10%). However, as Re increase, this difference
deviates considerably and becomes more pronounced at
the higher values of Pe. This observation would cast
doubts on the applicability at high Re of any results
obtained by computations using the Stokesian velocity
profile.

4.4. Validation of numerical results

Acrivos and Taylor [8] derived asymptotic solutions
that are applicable at the limit of creeping flow as well as
at small but finite Re:

Nu=0.991P'? +0.922 and

1 3
_ 1/3 x D p2 2
Nu = 0.991Pe (l + 16Re+ 160Re InRe + O(Re ))

(25)

For the case of liquid sphere, Levich [2] also provided an
asymptotic first-order solution for a liquid sphere at very
large Pe under the condition of creeping flow
4 1 1/2
Nu=|——— . 26
! {37[ 1+ e} (26)
In the case of a bubble (1 = 0), we have found out that
an exact correlation based on this asymptotic solution is:
Nu=0.651Pe'/? +1.600. The Nusselt/Sherwood numbers

at low Re have been compared to these asymptotic so-
lutions. The results are shown in Fig. 4. As observed in
this figure, the results at Re — 0 for both the bubble and
the solid sphere agree very well with the solutions of
Levich [2] and Acrivos and Taylor [8]. This validates the
numerical method used in this study.

4.5. Correlations for Nu and Sh

Based on the numerical results, which are explicitly
shown in Table 1, we have tried to develop working
correlations for the Nusselt or Sherwood numbers as
functions of Re, Pe and 1. These correlations of the re-
sults show the explicit influence of the viscosity ratio and
are an improvement to similar correlations, which ap-
pear in the literature and are applicable to solid spheres
or inviscid bubbles [20,21]. Because of the complexity of
the problem, which is a result of the presence of three
variables, we had to separate the ranges of validity of the
correlations into several sub ranges:

A. At small but finite Re (0 < Re < 1) and Pe > 10,
we are able to derive a general expression for
Nu/Sh, which is as follows:

Nu(A, Pe,Re)
(0651 . 09914 .
_<1+0.95,1P"’ T P (I ulke)
1.65(1 — a(Re)) A
+( 14095, '1+4) (27a)

where the function a(Re) is expressed as follows:

0.61Re
“Re) = 3

B. For higher Re the analysis of the data revealed
that the best correlations (that is those that result
in minimum standard deviation) are obtained when
the general correlations for Nu or Sh are given in
terms of the following three functions:

B1. The correlation for the Nu or Sk for an inviscid
sphere (4 = 0), which is as follows:

+0.032. (27b)

0.61Re
_ 12
Nu(0, Pe,Re) = 0.651Pe (1.032 + Re 21 )
0.61Re
+<1'60_Re+21)‘ (28a)

B2. The corresponding function of Nu or Sh for a
solid sphere (1 = o0), which is as follows:
Nu(co, Pe,Re) = 0.852Pe'* (1 4 0.233Re**)
+1.3 — 0.182Re™3, (28b)
B3. The corresponding function of Nu or Sh for a

sphere with viscosity ratio equal to 2 (1 =2.0),
which is as follows:
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Table 1
Nusselt/Sherwood numbers for a viscous sphere
A\ Pe 1 10 20 50 100 200 500 1000
Stokes flow (Re — 0)
0 2.333 3.682 4.544 6.264 8.198 10.906 16.29 22.37
0.5 2.318 3.533 4.283 5.755 7.391 9.669 14.09 19.09
1 2.311 3.459 4.153 5.495 6.969 9.008 12.928 17.27
2 2.302 3.381 4.015 5.219 6.518 8.264 11.626 15.31
5 2.297 3.315 3.896 4.971 6.100 7.606 10.4 13.356
10 2.294 3.283 3.838 4.852 5.901 7.276 9.78 12.383
100 2.291 3.250 3.778 4.726 5.688 6.922 9.104 11.304
Solid 2.289 3.24 3.763 4.698 5.643 6.85 8.972 11.097
Re=1
0 2.354 3.778 4.681 6.482 8.482 11.336 16.986 23.349
0.5 2.341 3.628 4.419 5.967 7.686 10.078 14.741 20.0
1 2.334 3.553 4.285 5.699 7.251 9.396 13.509 18.12
2 2.326 3.472 4.141 5.41 6.779 8.65 12.226 16.1
5 2.322 3.404 4.016 5.147 6.335 7.919 10.860 13.964
10 2.319 3.371 3.955 5.020 6.122 7.566 10.197 12.931
100 2.316 3.335 3.891 4.886 5.893 7.186 9.471 11.773
Solid 2.315 3.330 3.883 4.869 5.865 7.139 9.381 11.628
Re =10
0 2.395 4.082 5.143 7.242 9.584 12.9 19.47 26.88
0.5 2.385 3.938 4.880 6.716 8.745 11.550 17.13 22.38
1 2.380 3.859 4.734 6.417 8.240 10.795 15.73 21.36
2 2.372 3.767 4.568 6.079 7.707 9.933 14.174 18.713
5 2.368 3.686 4416 5.754 7.157 9.026 12.480 16.112
10 2.365 3.645 4.340 5.594 6.885 8.578 11.661 14.849
100 2.362 3.601 4.258 5.420 6.588 8.085 10.728 13.387
Solid 2.362 3.595 4.248 5.398 6.552 8.024 10.611 13.201
Re =20
0 2.404 4.196 5.33 7.575 10.09 13.630 20.65 28.54
0.5 2.395 4.061 5.08 7.063 9.26 12.320 18.34 25.1
1 2.39 3.98 493 6.775 8.74 11.500 16.88 22.89
2 2.385 3.895 4.769 6.412 8.181 10.596 15.183 20.276
5 2.379 3.8 4.592 6.036 7.546 9.560 13.31 17.263
10 2.376 3.756 4.508 5.857 7.24 9.052 12.358 15.8
100 2.373 3.708 4417 5.660 6.902 8.487 11.228 14.094
Solid 2.373 3.702 4.405 5.636 6.8 8.417 11.149 13.878
Re = 50
0 2.415 4.339 5.576 8.025 10.77 14.63 22.26 30.84
0.5 2.408 4.227 5.363 7.579 10.03 13.45 20.17 27.7
1 2.403 4.152 5.221 7.277 9.525 12.62 18.69 25.47
2 2.398 4.063 5.051 6.913 8.914 11.638 16.838 22.622
5 2.392 3.961 4.855 6.487 8.189 10.453 14.649 19.035
10 2.389 3.911 4.758 6.277 7.828 9.853 13.533 17.339
100 2.386 3.855 4.651 6.043 7.424 9.178 12.258 15.355
Solid 2.381 3.848 4.638 6.014 7.374 9.094 12.098 15.105
Re =100
0 2.423 4431 5.736 8.321 11.223 15.307 23.374 32.441
0.5 2417 4.341 5.564 7.958 10.604 14.307 21.579 29.726
1 2.413 4.275 5.438 7.688 10.141 13.471 19.562 25.499
2 2.406 4.181 5.262 7.317 9.53 12.539 18.326 24.746
5 2.401 4.077 5.060 6.871 8.761 11.260 15.798 20.358
10 2.398 4.021 4.952 6.635 8.360 10.608 14.660 18.756
100 2.394 3.959 4.831 6.278 7.756 9.630 12.936 16.268
Solid 2.384 3.951 4815 6.243 7.695 9.529 12.743 15.946

(continued on next page)
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Table 1 (continued)

2\ Pe 1 10 20 50 100 200 500 1000
Re = 200
0 2.424 4.482 5.835 8.539 11.578 15.851 24.285 33.759
0.5 2.420 4416 5.708 8.259 11.109 15.078 22.865 31.578
1 2.417 4.364 5.607 8.043 10.726 14.444 21.695 29.778
2 2412 4.287 5.458 7.713 10.157 13.481 19.84 27.06
5 2.405 4.168 5.232 7.223 9.243 12.021 17.262 22.937
10 2.391 4.042 5.019 6.815 8.472 10.816 15.122 19.67
100 2.386 3.974 4.889 6.412 8.002 10.045 13.648 17.283
Solid 2.385 3.967 4.874 6.378 7.952 9.951 13.466 16.987
Re = 500
0 2.426 4.528 5.922 8.726 11.887 16.340 25.136 35.010
0.5 2.424 4.488 5.845 8.559 11.594 15.842 24.181 33.503
1 2.422 4.454 5.779 8.399 11.329 15.392 23.317 32.138
2 2.419 4.4 5.672 8.162 10.893 14.616 21.895 29.896
5 2.401 4211 5.342 7.507 9.556 12.558 18.203 24.283
10 2.394 4.122 5.183 7.187 9.077 11.802 16.83 22.119
100 2.387 4.034 5.023 6.868 8.806 11.350 15.869 20.378
Solid 2.386 4.025 5.006 6.692 8.524 10.901 15.081 19.277
” P'ec:ssgﬁﬁfx('ﬁa'ﬂossogg Nu(Pe,Re, ) = — “Nu(Pe, Re, 0) -i——4)L Nu(Pe,Re,?2)
P Y R Y
for 0<A<2, and 10 < Pe< 1000 (29a)
x and
5 ) . 4 L —
£ . ] Nu(Pe,Re, ) = s 2Nu(Pe,Re, 2) +;L+2Nu(Pe, Re, 00)
g T T for 2< A< 00, and 10 < Pe < 1000. (29b)
P As shown in the last two equations, these correlations
are recommended for Pe > 10. At lower values of Pe, an
interpolation of the values of Table 1 will yield more
1 . . accurate results.

L
10 100 1000
Peclet number, Pe

4.6. The effect of the density ratio
Fig. 4. Comparisons between numerical results and asymptotic

solutions at creeping flow. In our study on the hydrodynamic force exerted on

a viscous sphere [17], we have found that, for a fixed
value of Re and of the viscosity ratio, the variations
of the density ratio, x = p;/p,, have only a minimal
effect on the external flow field. As a result, the drag
coefficients are not sensitive to the density ratio «.

Nu(2, Pe,Re) = 0.64P"* (1 4 0.233Re"*)

+1.41 — 0.15R"*. (28¢)

Thus, the final correlation functions obtained are given
by the following expressions in the sub ranges 0 < 1 < 2
and 2 < A< oo:

Table 2

The effect of the density ratio, x, on the Nusselt/Sherwood numbers

When one considers the mass/heat transfer equation
(8) and the pertinent boundary condition (17), one
will conclude that the density ratio (or equivalently

Re=10.0,A=1.0

K\ Pe 1 10 20 100 200 500
0.1 2.38 3.858 4.734 6.418 8.241 10.796 15.732
1 2.38 3.859 4.734 6.417 8.240 10.795 15.730

10 2.38 3.857 4.732 6.414 8.235 10.789 15.726
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the internal Reynolds number, Re;) would not affect
the Nusselt/Sherwood numbers. This was verified nu-
merically by conducting computations with different
values of the density ratio. The results of these
computations are summarized in Table 2. It is ap-
parent from this table that the results at different
density ratios are almost identical. This supports the
conclusion that the density ratio has almost no in-
fluence on the rate of heat or mass transfer from a
viscous sphere.

5. A note on the deformation of the droplets at high Re

A central part of the applicability of the results in this
paper is that at high values of Re the droplet remains
spherical. Early experimental evidence by Winnikow
and Chao [22] on the free fall or rise of drops in liquids
shows that a liquid drop will remain spherical when the
dimensionless Bond number, Bo, which is equal to the
ratio We/Fr, is less than or equal to 0.2, that is when

We  gdglps — pil o

Bo=—=
Fr Oforce

2. (30)

A closer look at the experimental data of the paper ac-
tually reveals that the eccentricity of the organic drops in
water is below 5% at Bo < 0.4 and that the eccentricity
of drops of several liquids (including water) in air is less
than 5% at Bo < 0.6. Even in the most restricted case of
this criterion (Bo < 0.2) calculations show that water
droplets in air will maintain their spherical shape at
values of Re up to 470. In the case of a substance with
high surface tension the corresponding Re would be
much larger (Re up to 1150 for mercury droplets). The
experiments of Winnikow and Chao [22] also show that
drops of m-nitrotoluene in water with d = 3.1 mm re-
main spherical at Re above 500. Therefore, the values of
Re in this study are not too high for droplets to retain
their spherical shape.

6. Conclusions

At high Re and Pe, momentum and thermal bound-
ary layers are formed outside a viscous sphere. The use
of two computational sub-domains for the external
fields, allows us to compute accurately the velocity field
and the temperature/concentration field outside the
sphere. Hence, we are able to solve with a high degree of
accuracy the governing equations and to determine the
forces as well as the rates of heat and mass transfer from
the viscous sphere. The numerical data obtained are
presented here in terms of the Sherwood/Nusselt num-
bers in a tabular as well as in a correlation form, which
may be used in engineering calculations. It is observed
that Reynolds and Peclet numbers (or equivalently the

Prandtl and Schmidt numbers) and the viscosity ratio
play an important role on the rate of heat or mass
transfer from the viscous sphere. On the contrary, the
density ratio does not affect at all the Sherwood and
Nusselt numbers.
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